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2-D, BLUFF BODY DRAG ESTIMATION USING A GREEN’S FUNCTION/GRAM-CHARLIER SERIES 

APPROACH 
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Sandia National Laboratories,  
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In this study, we extend self-similar, far-field, turbulent wake concepts to estimate the 2-d drag coefficient for a 

range of bluff body problems.  The self-similar wake velocity defect that is normally independent of the near field 

wake (and hence body geometry) is modified using a combined approximate Green’s function/Gram-Charlier series 

approach to retain the body geometry information.   Formally a near field velocity defect profile is created using 

small disturbance theory and the inviscid flow field associated with the body of interest.  The defect solution is then 

used as an initial condition in the approximate Green’s function solution.   Finally, the Green’s function solution is 

matched to the Gram-Charlier series yielding profiles that are integrated to yield the net form drag on the bluff body. 

  Preliminary results indicate that drag estimates computed using this method are within approximately 15% as 

compared to published values for flows with large separation.  This methodology may be of use as a supplement to 

CFD and experimental solutions in reducing the heavy computational and experimental burden of estimating drag 

coefficients for blunt body flows for preliminary design type studies.  

 

1. Introduction 

 

Drag estimates for strongly separated flow over blunt 

bodies is an essential piece of information for many 

engineering systems.   An application that demands 

our particular attention is aerodynamic drag forces on 

large ground transportation vehicles, i.e. 

tractor/trailer trucks.  As noted by Roy et. al
1
 for a 

common tractor/trailer, energy losses due to rolling 

resistance and accessories increase linearly with 

vehicle speed, while energy losses due to 

aerodynamic drag increase with the cube of the speed. 

At a typical highway speed of 70 mph, aerodynamic 

drag accounts for approximately 65% of the energy 

output of the engine
2
. Due to the large number of 

tractor/trailers on the US highways, even modest 

reductions in aerodynamic drag can significantly 

reduce domestic fuel consumption.  
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Though most modern computationally based 

aerodynamic drag reduction studies have focused on 

Computational Fluid Dynamics (CFD) methods 

utilizing evermore sophisticated (and concurrently 

computationally expensive) methodologies, there 

remains a valuable role for reduced complexity, 

analytically based models.   Here we describe a 

model that modifies the classical self-similar 

turbulent wake models discussed by Tennekes and 

Lumley
3
 and Townsend

4
.   As such, we will start by 

describing the Tennekes and Lumley self-similar 

analysis, identifying its limitations and then suggest 

an alternative approach based upon a combination of 

inviscid flow field modeling, a Green’s function 

solution and association with Gram-Charlier series.   

Although our focus is on 2d bluff body drag, the 

methods presented are extensible to axisymmetric and 

3-d flow. 

 

2. 2-d Bluff Body Drag 

 

Using order of magnitude arguments Tennekes and 

Lumley
3
 show that a suitable momentum equation for 

turbulent 2-d wakes is given by: 
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where U denotes the Reynolds averaged mean 

velocity and u and v represent the streamwise and 
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cross-stream fluctuating components, respectively.  

To the same order of magnitude one may linearize to 

obtain: 
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where U0 is the free stream velocity in the streamwise 

or x-direction.  

 

To reduce equation (2), Tennekes and Lumley argue 

that there must be a self-preservation solution, e.g. 

self-similar construction for the velocity field, i.e.: 
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is necessary where Us is the maximum cross-stream 

variation in U.   Note, that for wakes Us will be 

U(y=0) where the relevant coordinate system and 

associated definitions are shown in figure 1.  

 

 
Figure 1 Schematic diagram of wake flow with 

coordinate, velocity and length scale definitions. 

  

 

Unfortunately, the solution obtained by Tennekes and 

Lumley, cannot be strictly valid in the near field since 

the form of the similarity solution chosen by 

Tennekes and Lumley
3
 requires that 

2/12/1 BxlAxU s == −
and A and B are 

constants to be determined.   Obviously, the Us 

solution is not (and cannot be) valid for x<<1.   This 

limitation poses no problem in the far-field, of course, 

and is acceptable in an intermediate overlap region as 

well, but cannot be applied in the wake near-field. 

 

The connection to the velocity defect field and the 

drag coefficient is given by (2-d drag coefficient); 

equation: 

 ∫
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The 2-d momentum thickness θ is introduced through 

equation (4) as well.   See Tennekes and Lumley 

(1974) for details. 

3. Approximate Green’s function solution 

 

An alternative approach to the physically based 

similarity arguments presented in the text involves the 

mathematical analysis of a generalized problem.  

Here we discuss a range of fundamental solutions to 

the heat equation (the canonical form of the linearized 

wake relationship). 

 

The heat (linearized wake) equation may be written 

(α0 is a constant): 
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where we have the boundary conditions, 

0),(
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yxu .   The initial condition 

is not specified, but is reflected by an additional 

boundary constraint. Introducing a set of generalized 

variables we write 
ba yxfxu == ηη ;)( .   

Performing the necessary change of variable yields 

the relationship: 
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Similarity can be achieved by letting b=-1/2 with the 

coefficient an arbitrary.  It is of interest to consider 

two possible cases; (1) a=b=-1/2 and (2) a=0, b=-1/2 

(classical Boltzmann transformation
5
).   The term α0 

is chosen to yield simple coefficients.  The two 

solutions are: 

case (1), a=b=-1/2 

 

( )22/1exp;0''' ηη −==++ ffff     (7) 

 

and case (2) ) a=0, b=-1/2 

 

)2/2(1;0''' ηη erffff −==+       (8) 

 

Note that both solutions satisfy the boundary 

constraint f(η)=1 and the far field boundary condition 
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f(η→∞)=0. However, the second solution, i.e. 

equation (8), cannot satisfy symmetry, f’(0)=0, a 

reflection that the choice given for equation (7) is the 

“correct” one, while the Boltzmann transformation is 

not a satisfactory solution. 

 

However the choice a=0, b=-1/2 (classical Boltzmann 

transformation) is related to a Green’s function 

solution to equation (5)
6
.   The Green’s function 

solution (can be solved via Laplace/Cosine 

transforms as well) to equation (5) is: 
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Though equation (9) satisfies equation (5), it is 

clearly not a self-similar solution.   An interesting 

special case for this problem results if we let u(x,0) 

be the unit step function, u(0,y)=1 for 0<y<1 and zero 

otherwise.   Substitution into equation (9) gives: 
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which, again, cannot be self-similar.   A self-similar 

equation is possible if we let u(x=0,y)=δ(y) where δ 

denotes the Dirac delta function.   The solution 

associated with the point source is related to equation 

(7).  Thus we note that there is only a very limited 

initial condition form that is supported by the self-

similar relationships.  If, however we are willing to 

use the functional form of equation (9) we can form a 

solution to the governing equations that is self-

similar, i.e. 
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where η0 denotes the dimensionless length scale 

associated with the bluff body.  Note, that equation 

(11) will approximately satisfy the full range of 

conditions required for solution of the wake problem, 

i.e. approximately satisfies equation (6), recovers 

symmetry, f’(0)=0 and satisfies the far-field 

conditions f(η→∞)=0. 

4. “Initial Condition Velocity Field”; Connection 

to the Inviscid Flow Field 

 

To utilize equation (11) to obtain the defect velocity 

field, it is necessary to be able to compute a near field 

velocity defect profile, i.e. fnear.  This function must 

provide the sum total of the bluff bodies geometric 

information.   In terms of a practical result, it also 

must be readily obtainable and unique.   Perhaps the 

most obvious closure for the near field defect solution 

that satisfies these requirements is to utilize the local 

inviscid potential flow solution. 

 

For sharp edged bluff bodies such as the square 

cylinder shown in figure 1. where the separation 

location is well established, the defect velocity field is 

readily estimated by the discontinuous step function: 



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=
otherwise

f near
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101 η
; where η=2y/d.  

Substitution of this near-field relationship into 

equation (11) yields: 
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integrated the near field and Green’s function 

solution, give CD= ∫∫
∞

∞−

∞
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= ηη fddf near =2.  Though 

this estimate for 2-d drag is quite good, since 

CD,exper=2.1
7
, we note that the Green’s function does 

not modify the net initial defect velocity, hence in 

terms of the drag coefficient the Green’s function 

relationship provides no new information.  Our 

reason to utilize the Green’s function form will 

become apparent later, but we already note, that the 

Green’s function relationship will satisfy several 

essential properties including: 

continuous, differentiable flow field valid over full 

domain, i.e. -∞→+∞. 

satisfies symmetry and far field boundary conditions 

and, approximately, satisfies governing linearized, 

momentum (diffusion) equation. 

 

 

When considering a smooth bluff body such as a 

circular cylinder it is necessary to modify our 

methodology.  The inviscid defect velocity for a 

circular cylinder can be approximated as: 
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integral for 
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, implying that the inviscid net drag on cylinder is 

zero (as is well known by D’Alembert’s paradox).  

Our focus, here should be on the core (close to 

centerline) velocity defect.  Thus if one considers fnear 

near the centerline only we write:  
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The piecewise continuous field is constructed such 

that fnear>0.  This simple relationship is precisely that 

one utilized for laminar flow (laminar on the body 

surface, the wake is always turbulent) over a cylinder. 
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Figure 2. Local defect velocity field approximation 

for flow in the lee of a circular cylinder. 

 

For higher Reynolds flows, e.g. turbulent surface flow 

over a cylinder, it is necessary to modify the 

preceding methodology.  In this situation, it is 

necessary to utilize a more complete near field 

approximation, i.e. by expanding the complete defect 

velocity relationship in Taylor series we can write: 
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piecewise continuous near field defect velocity 

relationship we write: 
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Other examples of near field expansions are provided 

subsequently.  We note, that our attention is directed 

towards bluff body flows where we must assume that 

massive separation has occurred. Sharp (minimal 

rounding as compared to body length scales) edged 

flow geometries will tend to exhibit this type of 

separation.   Flows where separation is long delayed 

(very smooth well-rounded shapes with highly 

turbulent surface flow, e.g. high Reynolds number 

circular cylinder ) will tend to be difficult to model 

using the described methodology.   For these 

situations, we can expect qualitative agreement only. 

5. Gram-Charlier Series 

 

In the previous section, it was clear that it is the local 

velocity defect solution that provides an estimate of 

drag since the Green’s function relationship, equation 

(11), preserves the area under the local velocity 

defect approximation.   However, the classical far-

field wake profiles derived by Tennekes and Lumley 

should be taken into account in any formulation.    

The far-field defect profile solution consistent with 

the Tennekes and Lumley formulation is given 

as: 
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2

1
exp αηnearf .    This function 

positive over the entire half space, thus the 

relationship is continuous.    By way of comparison 

the drag coefficient integral using this value (or its 

Green’s function form) is:  
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dCD  that is 

approximately 25% larger than the flow over a 2-d 

square cylinder.   This value represents a maximum 

drag for typical 2-d bodies.  Thus, we probably would 

not prefer to use the far-field wake directly in a drag 

estimation scheme. 

 

However, as noted by Tennekes and Lumley
3
, the far 

field wake might represent a single first term in a 

Gram-Charlier series (see 

http://mathworld.wolfram.com/CharlierSeries.html, 

Keeney and Keeping
7
; Cramer

8
 for a summary 

concerning Gram-Charlier series), where the series is 

written: 

http://mathworld.wolfram.com/CharlierSeries.html
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with the new, unknown coefficients, ai.  The question 

now becomes, how does one assess these constants.   

We propose, that the constants ai, be related to the 

Green’s function flow fields that have been described 

previously (see equation (11)). 

 

Demanding matching of the functional values and the 

derivatives between the Green’s function solution and 

the Gram-Charlier expansion will uniquely specify 

the constants, ai in equation (12).    It is convenient to 

rewrite equation (13) in the form:   
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Computing derivatives, evaluating and collecting 

terms, we write: 
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Notice that for symmetric problems (the possibility of 

asymmetry is included in the complete series) that we 

can write ))0('')0(3(
2

1
0 GFGF ffa −= .  

 

It is worth stating that the Gram-Charlier series is 

only convergent for rapidly decaying kernel functions 

and thus is not typically convergent
8
.  The utility of 

divergent asymptotic series, however, is well known 

in general
9
 and noted for Gram-Charlier series by 

Cramer
8
. 

 

With the coefficients in equation (12) or equivalently, 

equation (13) specified, we introduce the new profile 

information into the force balance relationship, e.g. 

equation (4), where we note, that the integrals are 

given by ( ) 2/12 2)
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effect the remainder of the solution.   The integral 

associated with the a1 term (necessary for non-

symmetric problems) is given by 
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From these equations, it is possible to obtain values, 

equivalent to equation (11) for both the “square 

cylinder” and the circular cylinder wakes.   As a 

simple example (minimal algebraic complexity) we 

consider the square cylinder.   Utilizing the 

discontinuous step function defect velocity 

field,



 ≤≤

=
otherwise

f near
0

101 η
; where η=2y/d we 

use the Green’s function relationship, equation (11), 

to write:
( ) ( )[ ]

2

11 −−+
=

ηη erferf
f .     

Computing the necessary derivative evaluations (note 

that we use the symbolic solver MAPLE  to 

perform many of the straightforward but tedious 

operations in this process): 
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Thus 84.0))0('')0(3(
2

1
0 ≈−= GFGF ffa , 

implying that CD=0.85(2π)
1/2

=2.10. 

4. Preliminary Results 

 

Preliminary drag coefficient results for a range of 2-d 

bluff body shapes are presented in table 1.   

Comparison is made with published values given in 

White
10
 and Hughes and Brighton

11
. 
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Shape Theor

. CD 

Pub.  

 CD 

Reynolds # Relativ

e Error 

(%) 

Square Cylinder 

(step function) 

2.1 2.1 Independent 0% 

2:1 Rectangular 

Cylinder 

 (num. inviscid) 

1.85 1.7 Independent 

(Re>103) 

10% 

Equilateral 

triangle (apex 

facing flow)** 

1.35 1.6 Independent 15% 

Circular Cylinder 

(laminar B. L.) 

1.3 1.2 103<Re<105 8% 

Circular Cylinder 

(Transition B. L.) 
0.63 0.6 Re≈5x105 5% 

Circular Cylinder 

(Turbulent B. 

L.)*** 

0.51 0.3 Re>106 70% 

Parabolic 

Cylinder, f=x(1-x) 

(Small 

disturbance)(Turb

ulent B. L.) 

0.15 0.2 Re>>>1 25% 

Table 1 Preliminary comparison between published 

2-d drag coefficient results and the theoretically-

based model developed here.   Notice that the 

theoretical model compares adequately with 

published values for rapidly separated flows (sharp 

edged and laminar) but performs poorly for smooth 

bodies with delayed separation. 

 

*A comparison between numerically derived inviscid 

and step function velocity defect relationships is 

shown in figure 3 for a 2-d rectangular cylinder. 
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Figure 3. Numerically generated inviscid flow 

velocity defect function for 2:1 rectangular cylinder. 

 

**Simple step function closure; 



 ≤≤

=
otherwise

f near
0

2/201 η
 

***An 80% effective diameter approximation has 

been used in this computation, see below for details. 

 

Recall, that a requirement of this model is that the 

flow field be characterized by large-scale separation.  

The less energetic, locally laminar model (the wake is 

turbulent regardless of the character, laminar or 

turbulent, of the local flow on the body), however, 

will rapidly separate thereby creating a flow that is 

better described by the theoretical model.  

Additionally, the use of a turbulent length scale that is 

on the order of the thickness of the body, i.e. 

2/dl ≈  becomes rather less meaningful for a 

smooth flow with delayed separation, a more 

appropriate value for the length scale is to use the 

separation point over the body to compute an 

effective diameter.   For a circular cylinder separating 

at approximately 120 degrees
12
) the effective 

diameter is estimated to be approximately 80% of the 

true diameter. (See figure 4). 

 

 
 

Figure 4.  Effect of rounding and boundary layer type 

(laminar or turbulent) on the validity of length scale 

assignment assumption for square and circular 

cylinders.   Notice that 2/dl ≈  is a particularly 

poor approximation for turbulent flow over a 

cylinder. 

 

Though our interest is primarily focused upon 

deriving an estimate for the integrated value CD, we 

can also utilize the preceding analysis to obtain 

estimates of the flow field behavior.   Following 
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Tennekes and Lumley
3
, and utilizing their variables 

2/12/1 BxlAxU s == −
and A and B are 

constants to be determined we obtain an 

approximation for the centerline velocity behavior as 

a function of x: 
1

016.3 −= dxUU s .  Of course, 

this expression is not valid for x<<1, but we expect 

that the functional form, i.e. power of x, -1 to be 

correct.   By way of comparison, we consider the 

centerline velocity data for flow over a square 

cylinder square cylinder given by Lyn et. al
13
. in 

figure 5. 
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LERP 1995
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Figure 5. Centerline velocity data for flow over a 

square cylinder square cylinder given by Lyn et. al.
10
 

with regression analysis.   Notice that the curve-fit 

expression decays to the –0.91 power a value that 

compares well with the theoretical value, -1. 

 

6. Conclusions and recommendations 

 

In this discussion we have modified classical self-

similar, far-field, turbulent wake concepts to estimate 

the 2-d drag coefficient for a range of bluff body 

problems.  The self-similar wake velocity defect that 

would be normally independent of the near field wake 

(and hence body geometry) was altered using a 

combined approximate Green’s function/Gram-

Charlier series approach to retain the body geometry 

information.  Preliminary results indicate that drag 

estimates computed using this method are within 

approximately 10-20% as compared to published 

values for flows with large separation.  The potential 

value of this method is as a way to utilize poorly 

resolved simulation results to provide an inexpensive 

estimate of body drag or as the basis of a physically 

consistent correlation scheme.  This methodology 

may be of use as a supplement to CFD and 

experimental solutions in reducing the heavy 

computational and experimental burden of estimating 

drag coefficients for blunt body flows for preliminary 

design type studies.  

7. Acknowledgements 

The author would like thank professor C. Roy, 

Auburn University, AL; Dr. B. Hassan, Dr. M. 

Barone, Dr. F. Blottner and J. Payne, Sandia National 

Laboratories, NM for their continued technical 

support.  Sandia is a multi-program Laboratory 

operated by Sandia Corporation, a Lockheed Martin 

Company, for the United States Department of 

Energy under contract DE-AC04-94-AL85000. 

8. References 

 
1
Roy, C., McWherter-Payne, M., Salari, K. 2002, 

RANS simulations of a simplified Tractor/Trailer 

Geometry, UEF. 
2
McCallen R., Couch R., Hsu J., Browand F., 

Hammache M., Leonard A., Brady M., Salari K., 

Rutledge W., Ross J., Storms B., Heineck JT., Driver 

D., Bell J., Zilliac G. 1999, Progress in reducing 

aerodynamic drag for higher efficiency of heavy duty 

trucks (class 7-8). SAE Paper 1999-01-223. 
3
Tennekes, H. and Lumley, J. L. 1972 A first Course 

in Turbulence, MIT Press, Cambridge, MA. 
4
Townsend, A. A. 1976 The Structure of Turbulent 

Shear Flow, Cambridge U. Press, Cambridge, UK. 
5
Logan, J. D. 1978 Applied Mathematics, Wiley, NY. 

6
Haberman, R. 1983 Elementary Applied Partial 

Differential Equations with Fourier Series and 

Boundary value Problems, Prentice Hall, Englewood 

Cliffs, NJ. 
7
Keeney, J. F. and Keeping E. S. 1951 Mathematics 

of Statistics Pt. 2, 2
nd
 ed. Princeton, NJ, Van 

Nostrand. 
8
Cramer H. 1957 Mathematical Methods of Statistics, 

Princeton U. Press, Princeton NJ. 
9
Van Dyke, M. 1975 Perturbation Methods in Fluid 

Mechanics, Parabolic Press, Stanford, CA. 
10
White, F. M. 1986, Fluid Mechanics, McGraw-Hill, 

NY. 
11
Hughes, W. F and Brighton, J. A.,1991, Fluid 

Dynamics, 2
nd
 ed. McGraw-Hill Inc. NY.  

12
Schlichting, H. 1979, Boundary Layer Theory, 

McGraw-Hill, New York. 
13
Lyn, D. A., Einav, S., Rodi, W. and Park, J-H 1995 

 A Laser-Doppler velocimetry study of ensemble 

averaged characteristics of the turbulent near wake of 



 8 

a square cylinder, Journal of Fluid Mechanics, 304, 

pp. 285-319. 
14
Milne-Thomson, L. M. 1968 Theoretical 

Hydrodynamics,  Macmillan, NY. 

9. Nomenclature 

 

ai = Charlier Series constants 

A = Velocity solution constant 

Ac = Cross-sectional area 

B = Length scale solution constant 

CD = Drag coefficient 

const = Unspecified constant value 

g = Self-similar eddy viscosity variable 

l = Turbulent wake lengthscale 

RT = Turbulent Reynolds number    

U = Streamwise Reynolds averaged 

velocity 

u = Streamwise turbulent fluctuating 

component 

v = Cross-stream turbulent fluctuating 

component 

x = Streamwise spatial coordinate 

y = Cross-stream spatial coordinate 

α = Defined variable, see equation (10) 

θ = Momentum thickness 

ξ = Dim. streamise spatial coord.  

 

Subscripts/supercripts 

 

0 = Free stream 

s = Centerline maximum 
---
 (bar) = Reynolds averaged operator 

‘ = Ordinary differential operator 

* = Dimensionless quantity 

 

9. Appendix I: Potential Flow Over a Semi-infinite 

Body with a Step 

 

Although a simplified, step function approach was 

taken with flow over a square cylinder, it is possible 

to analyze the potential flow over a step in a semi-

infinite space.  

 

Figure A.1.1 Schematic for 2-d flow over a semi-

infinite step 

 

The method (following Milne-Thompson
14
) is based 

upon the complex potential and the famous Schwarz-

Christoffel transformation method.   In brief the 

method involves using the Schwarz-Christoffel 

transformation to carry the physical problem from the 

complex (z=x+iy) “z” plane in to the computationally 

simple (complex) ζ plane.   The problem is then 

solved using superposition of elementary potential 

functions in the ζ plane to obtain the associated 

complex potential where ψφ iw += .  The 

construction.   In general, one can obtain (more or 

less, the solutions are almost always implicit and in 

terms of quadratures) closed form solutions for the 

associated flow field.  Following Milne-Thompson, 

we write: 

 

( )

ζ
π

ζζ
π

hU
w

h
z

=

+−= −12 cosh)1(

       

         (A.1.1) 

A more useful form can be obtained by introducing 

the variable, t where tcosh=ζ .  Thus, in terms of 

the new variables we write: 

 

( )

t
hU

w

tt
h

z

cosh

sinh

π

π

=

+=

       (A.1.2) 

Computing the velocity field from equation (A.1.2) 

by differentiating since 
dz

dw
ivuV −=−= and 

dz

dt

dt

dw
V = .  Computing the required terms we 

obtain: 

 

( ) 1
cosh1

sinh

−
+=

=

t
hdz

dt

t
hU

dt

dw

π

π

       (A.1.3) 

and 
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







=

+
=

2
tanh

)cosh1(

sinh t
U

t

t
UV  (A.1.4) 

From equation (A.1.2) we approximate that 

)(..
2 3tO
ht

z +=
π

 so that the streamwise velocity 

is approximated by: 

 

 

 









+

















=







=

h

y

h

x

h

x

U
z

Uu

2
cos

2
cosh

2
sinh

)
4

tanh(Re
ππ

π

π

       (A.1.5) 

 

Note that the fundamental nature of this problem 

makes it of sufficient interest, that it is appropriate to 

perform a numerical solution in support of the 2-d 

analysis.   A 2-d problem is shown in figure A.1.1    

This solution is for a dimensionless step height, 

h/Ldomain=1/10. Notice that there is good agreement 

between the analytical solution and the numerical 

problem. 

 
(a) Schematic diagram 
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(b) Results 

 

Figure A.1.1 2-d flow over a semi-infinite body with 

a step computed using analytical and numerical 

arguments.   Dimensionless step height is 0.1, 

h/Ldomain. 

 

A second problem of interest is associated with the 

potential flow over a finite body.   We can compute 

this flow by making several limited modifications to 

the preceding problem.   The schematic diagram of 

this problem as well as the streamwise velocity 

directly behind the body is given in figure A.1.3.   

Notice the good agreement between the semi-infinite 

models and the finite model. 

 

 
(a) Schematic diagram 
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(b) Results 

 

Figure A.1.3 Potential flow over a finite 2-d body.   

Note, that there is little difference between the semi-

infinite and infinite problems. 
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